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aspect ratio, H/L; 
gravitational acceleration; 
vertical dimension ; 
thermal conductivity; 
permeability of porous medium; 
horizontal dimension ; 
Nusselt number; 
Prandtl number; 
heat transfer rate; 
Rayleigh number based on L; 
Rayleigh number based on L and K; 
temperature of warm wall; 
temperature of cold wall ; 
thermal diffusivity; 
coefficient of thermal expansion ; 
kinematic viscosity. 

1. INTRODUCTION 

NATURAL convection is an important heat-transfer me- 
chanism in the technology of building insulation. From the 
point of basic research in heat transfer, the phenomenon is 
being studied mainly in terms of simple models of free 
convection in rectangular enclosures filled either with a 
Newtonian fluid or with a fluid-saturated porous medium. 
The subject of free convection in enclosures is extensive and 

has numerous applications in practical engineering si- 
tuations. A comprehensive review of free convection heat 
transfer in enclosures filled with fluid was presented in a 
monograph by Ostrach [I]. In a more recent article, Buch- 
berg, Catton and Edwards [2] reviewed the applications 
pertaining to heat transfer through spaces encountered in the 
solar power technology. 

The purpose of this article is to review the analytical work 
on free convection in rectangular enclosures. The review 
consists of illustrating the ability of each theory to predict the 
dependence of the net (wall-to-wall) heat-transfer rate on the 
cavity aspect ratio height/length (H/L). As most analytical 
studies have been conducted in either the vertical or horizon- 
tal cavity limit, each theory has not made it clear how the 
variation in aspect ratio influences the net heat-transfer rate 
through the vertical double wall. This article presents an 
overall view of what has been accomplished analytically over 
the entire geometry spectrum (tall cavities, H >> L, and 
shallow cavities, H << L). In addition to immediate com- 
parisons among different theories, this review points out 
which portions (bands) of the geometry spectrum need more 
analytical work. An essential aspect of this review is the 
parallel coverage of enclosures filled with fluid (Fig. 1), uis-d- 
vis enclosures filled with a porous medium (Fig. 2). In this 
regard, the symmetry between Figs. 1 and 2 is significant, 
meaning that analytical methods developed in one field can 
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Fig. 1. Summary of heat-transfer theories for a rectangular cavity filled with Boussinesq-incompressible 
fluid. 
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FIG. 2. Summary of heat-transfer theories for a cavity filled with a fluid-saturated porous medium 

be successfully adopted in the treatment of the related 
problem in the parallel field. 

2. RECTANGLLAR E[\ICLOSbRES FII.LED WITH FI.1’11) 

Bachelor [3] showed that the fluid mechanics of the fluid- 
filled rectangular cavity depends on three dimensionless 
parameters. 

In the above definitions, A, 9, H, L, Pr, Ru,,, Tu,h, z, [j. v are the 
aspect ratio, gravitational acceleration, cavity vertical dimen- 
sion, horizontal dimension, Prandtl number, Rayleigh num- 
ber, vertical wall temperatures, thermal diffusivity, coefficient 
of thermal expansion and kinematic viscosity, respectively. 
The Nusselt number for net heat transfer Q between the two 
vertical walls of the enclosure is defined as 

where k is the thermal conductivity of the medium. In general 
we expect Nu to be a function of Ru,,, Pr and A. However, for 
fluids with Prandtl number of order one and higher, experi- 
mental results indicate that the Pr effect of Nu is minor so that 
as a good approximation Nu depends only on Ru,, and A. 

2(a) Tull enclosures 
The only theory available for predicting the Nusselt 

number for tall cavities in the range where free convection is 
the dominant heat transfer mechanism was proposed by Gill 
[4]. He envisioned a boundary layer-type few regime in 
which the fluid motion is confined to layers near the two 
vertical surfaces, leaving the fluid in the central portion of the 
vertical space in a stagnant and vertically stratified condition. 
It must be said that flow visualization experiments starting 
with the work of Elder [5] and numerical simulations of the 
flow such as those reported by de Vahl Davis [6] provide little 
support for the existence ofa truly stagnant and stratified core 
as assumed by Gill. However, a recent comparison [7] of 
Gill’s theoretical prediction for Nu with experimental and 
numerical correlations shows excellent agreement in the Ro,, 
range where convection heat transfer is dominant. 

The overall Nusselt number predicted by Gill’s theory, as 
calculated later by Bejan [7), is 

Vu = 0.364(&/A)’ 4. (51 

Figure 1 shows this prediction for a number of Ru, values and 
aspect ratios in the range 10 < A < 100. As the vertical cavity 

becomes shorter (i.e. as A decreases); the heat-transfer rate at 
constant wall thickness L and temperature difference (con- 
stant Ru,,) increases. An explanation for why the heat-transfer 
rate increases as the convective cell is shortened can be given 
m terms of the counterflow heat exchanger formed by the two 
vertical branches of the convective cell. With one (warm) 
branch rising and the other (cold) falling, the counterflow 
transports heat vertically upward between the two wails. ‘The 
heat flow is first extracted from the lower left-hand corner of 
the cavity, is then carried upward and, eventually deposited in 
the upper right-hand corner. As the end-to-end insulation 
capability of any counterflow heat exchanger increases with 
the heat-transfer area available between the two branches [g], 
it is clear that the longer the flow path the lower the 
convective heat leak carried by the counterflow, hence the 
low-er the net heat transfer across the vertical enclosure. 

An extension of Gill’s analysis was proposed more recently 
by Bejan [7] who, like Quon [9], questioned the basis for 
selecting the two floating constants which appear in the Gill 
theory. Since Gill’s solution cannot satisfy at the same time 
the adiabatic and impermeable conditions along the two 
horizontal boundaries of the cavity. Bejan proposed to 
account for all four conditions in an average manner by 
requiring that the net upflow of energy described in the 
preceding paragraph vanishes in the vicinity of the top and 
bottom end walls. The impact of this modification is im 
proved agreement between Gill’s theory and experimental 
results for cases in which the cavity is moderately tall. 

The case of horizontal cavtities wtth adiabatic horizontal 
walls and isothermal (T,, ‘I,,) vertical end-walls was con- 
sidered theoretically by Cormack er ul. [IO]. Their analysis 
was based on an asymptotic solution in parameter .4 << I for 
the Row and temperature field in the core of the cavity, 
matched with asymptotic solutions describing the flow in the 
two end-turn regions. The Nusselt number resulting from this 
theory, 

Vu = 1 + 2.86 x 10~ ’ RutA’, 16) 

was found to agree well with experimental and numerical 
results in the limit A - 0 and RaL finite but fixed. The dotted 
lines of Fig. 1 show the asymptotic result (6). The curves 
demonstrate that decreasing the cavity height to the pomt 
where the cavity is very shallow has the effect ofquenching the 
convective cell and the heat leak associated with it. This 
conclusion is consistent with the counterflow heat exchanger 
analogy presented in the preceding subsection. the only 
difference being that this time the counterflow pattern is 
oriented horizontally. 
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Bejan and Tien [ll] constructed a theory for the same 
phenomenon by coupling the asymptotic (A + 0) core 
solution of Cormack et al. with integral solutions for the flow 
in the two end regions. The result of this matching is a 
solution whose range of validity extends well into the aspect 
ratio domain where the asymptotic solution [lo] breaks 
down. The Nusselt number predicted by this integral- 
asymptotic analysis agrees very well with all experimental 
and numerical information available on the phenomenon, 
especially in the high Ra, range where the Cormack et al. 
asymptotic solution does not apply. The solution is presented 
on the same Nu-A graph of Fig. 1. This is the first instance 
where it is shown analytically that at constant Ra,, there 
exists a dell defined aspect ratio for which the overall heat 
transfer rate (Nu) is a maximum. 

2(c) Square enclosures 
No theory exists for free convection in enclosures of aspect 

ratio equal to one. However, we consider here the case H/L = 
1 in order to show that the theories for tall enclosures and 
shallow enclosures approach each other in this limit. This fact 
is evident from Fig. 1 where, in addition, we show heat- 
transfer results based on the experimental and numerical 
work oublished bv Newell and Schmidt r121. Han r131 and 
Elder’[5]. The tall enclosure Nusselt >uGber p;edi&ion 
approaches the experimental results from above while the 
shallow enclosure theory approaches the same results from 
below. 

3. RECTANGULAR ENCLOSURES FILLED WITH 

FLUID-SATURATED POROUS MEDIUM 

The theoretical study of free convection in rectangular 
enclosures packed with porous material has traditionally 
lagged behind the theoretical advances reviewed in the 
preceding section. The basic assumption in the analytical 
treatment of the phenomenon is that the Darcy flow model 
applies. Coupled with the Boussinesq-incompressible fluid 
model, the Darcy flow assumption leads to a set of linear 
momentum equations. However, the mathematical problem 
remains weakly nonlinear due to the convective heat trans- 
port terms present in the energy equation. The free con- 
vection mechanism depends on two dimensionless groups, 
the aspect ratio A and the Darcy-modified Rayleigh number : 

RaL,, = 
gBWTa - Tb) 

(7) 
UV 

where K is the permeability of the medium. 

3(a) Tall enclosures 
The equivalent of Gill’s theory [4] for convection in a 

vertical porous slot was reported a few years later by Weber 
[14] whose theoretical result for the Nusselt number, 

Nu = 3-“*(Ra&A) , l/Z (8) 

agrees fairly well with the experimental data reported by 
Schneider [IS] and Klarsfeld [ 163, particularly in cases where 
A is large and Nu is clearly dominated by convective effects 
(Nu >> 1). 

In a recent note, Bejan [17] modified the Weber theory, 
fitting the boundary layer solution with average zero energy 
flux conditions along the top and bottom walls. The Nusselt 
number predicted by the modified theory [17] agrees ex- 
tremely well with the experimental data of [l&16] as well as 
with numerical heat transfer calculations reported in [ 18,191, 

Shallow cavities 
Walker and Homsy [20] have recently published an 

asymptotic analysis in the limit A -+ 0 and Ra,., finite, 
patterned after the earlier technique developed by Cormack 
et al. For the Nusselt number, Walker and Homsy found 

Nu = 1 + &,Rat.KA4. 

The same result was published in an independent study by 
Bejan and Tien [21]. The dotted lines on Fig. 2 show the 
asymptotic result (9) and its limited domain of applicability. 
In their study, Bejan and Tien [21] presented also an 
approximate solution which consists of matching the A -P 0 
asymptotic solution valid in the core of the shallow cavity 
with Karman-Pohlhausen solutions valid in the end-turn 
regions. .This result is presented in Fig. 2, again, demonstrat- 
ing analytically the existence of a critical aspect ratio for 
which, at constant Ra,.,, the Nusselt number reaches a 
maximum. 

3(c) Square enclosures 
The case H/L = 1 is considered here to show how the tall 

and shallow enclosure theories approach one another when 
the enclosure is neither tall nor shallow. The discrepancy 
between the two theoretical predictions is relatively more 
pronounced than in Fig. 1. However, the two predictions fall 
on either side of the numerical heat-transfer data reported for 
square cavities by Bankvall [18] and Horne [22]. 

4. CONCLUDING REMARKS AND RECOMMENDATIONS 

FOR FUTURE RESEARCH 

The analytical work reviewed above leads to the practical 
conclusion that sufficient analytical means are available for 
predicting heat-transfer rates and the effect of cavity shape on 
heat transfer. The accuracy of these theoretical results 
increases in the two extreme cases A >> 1 and A << 1. For a 
given temperature difference and vertical wall spacing, con- 
stant Ra, or RaL,K, there exists a band of aspect ratios which 
lead to the highest possible heat-transfer rates through the 
cavity. From a thermal insulation engineering point of view 
this range of aspect ratios must be avoided. In order to reduce 
the convective contribution to heat transfer we must force the 
convective cell to function as an elongated counterflow heat 
exchanger in which the two long branches are in superior 
mutual thermal contact. 

Examining Figs. 1 and 2 we recognize areas in which 
further theoretical work would constitute a contribution. 
First, the limit Ra + 0 with A >> 1 and fixed lacks a theory 
describing how the heat-transfer rate shifts from the con- 
duction dominated regime to the convection (boundary 
layer) regime analyzed by Gill and Weber. An appropriate 
start in this direction would be the asymptotic analyses of 
Batchelor [3] and, for porous cavities, Burns, Chow and Tien 
[19], who discuss qualitatively the variation of Nu with Ra, 
and Ra,,, in the conduction dominated limit. Another area 
ready for theoretical development is the square cavity 
problem. 
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NOMENCLATURE 

coefficients ; 
specific heat at constant pressure; 
gravitational acceleration ; 
thermal conductivity ; 
permeability ; 
length of similarity pattern; 
depth of well ; 
Nusselt number; 
heat-transfer rate through well opening; 
radial position ; 
well radius ; 
Rayleigh number; 
temperature ; 
well-wall temperature ; 
reservoir temperature; 
temperature, Oseen solution ; 
vertical velocity ; 
vertical velocity, Oseen solution ; 
vertical velocity infinitely far from wall; 
radial velocity ; 
velocity perpendicular to the wall ; 
vertical position ; 
distance from vertical wall ; 
total thickness of vertical boundary layer; 
dimensional quality ; 
pertaining to the core. 

Greek symbols 

a, thermal diffusivity ; 
BY coefficient of thermal expansion; 

Y, core radius ; 

horizontal length scale, Oseen solution ; 
viscosity; 
kinematic viscosity ; 
density ; 
stream function. 

I. INTRODUCTION 

BOUYANCY-INDUCED convection in fluid-saturated porous 
media is an important topic in contemporary heat-transfer 
research. The objective of this article is to outline an analysis 
of the natural convection mechanism in a vertical cylindrical 
well filled with porous medium [l]. The well opens into a 
semi-infinite space filled with the same porous medium. In 
what follows we analyze the convection pattern generated 
when the cylindrical wall and the semi-infinite space are 
maintained at different temperatures. 

The present problem is related to the work of Minkowycz 
and Cheng on convection about a vertical cylinder [2] and 
about a vertical plane [3]. The Minkowycz and Cheng 
studies, as well as the present one, are aimed at explaining the 
interaction between a very large porous reservoir and an 
irregular impermeable surface bordering the reservoir from 
above or below. The impermeable surface may protrude 
mto the porous medium, as in [2,3], or it may have 
concavities filled by the neighboring porous material. The 
latter set of circumstances is the subject of the present 
investigation. 

2. MATHEMATICAL FORMULATION 

We model the fluid-saturated porous medium as homo- 
geneous [4] with the following physical properties: fluid 
density, p; viscosity, b; coefficient of thermal expansion, 0; 


